El grupo Ixa de la UPV-EHU avanza en la traducción automática sin diccionario
- Estrategia Empresarial
- 19-Febrero-2018
La mayoría de los sistemas de aprendizaje automático requieren supervisión humana, y la traducción automática no es una excepción: el ordenador utiliza millones de traducciones hechas por personas para extraer patrones y, de esta forma, aprender a traducir cualquier texto. Este método funciona bien con pares de idiomas como el inglés y el francés, pues existen muchas traducciones entre ambos. Sin embargo, no es tan efectivo para la gran mayoría de pares de idiomas con recursos limitados, como es el caso del alemán-ruso o el euskera-inglés, por ejemplo.
En este contexto, Mikel Arte-txe, Eneko Agirre y Gorka Labaka, investigadores del grupo Ixa de la Facultad de Informática de la UPV/EHU, han desarrollado un método de traducción automática basado en el aprendizaje sin supervisión; es decir, sin diccionarios o traducciones humanas.
“Imagina que le das a una persona una gran cantidad de libros escritos en chino y otros tantos, distintos, en árabe, con el objetivo de que aprenda a traducir del chino al árabe. A priori parece una tarea imposible para un ser humano. Pero nosotros hemos demostrado que un ordenador es capaz de hacerlo”, afirma Mikel Artetxe, que está realizando su tesis doctoral sobre el procesamiento del lenguaje natural y el aprendizaje automático.
En este contexto, Mikel Arte-txe, Eneko Agirre y Gorka Labaka, investigadores del grupo Ixa de la Facultad de Informática de la UPV/EHU, han desarrollado un método de traducción automática basado en el aprendizaje sin supervisión; es decir, sin diccionarios o traducciones humanas.
“Imagina que le das a una persona una gran cantidad de libros escritos en chino y otros tantos, distintos, en árabe, con el objetivo de que aprenda a traducir del chino al árabe. A priori parece una tarea imposible para un ser humano. Pero nosotros hemos demostrado que un ordenador es capaz de hacerlo”, afirma Mikel Artetxe, que está realizando su tesis doctoral sobre el procesamiento del lenguaje natural y el aprendizaje automático.
Trabajan con redes neuronales, algoritmos
informáticos que se inspiran en el cerebro humano
Este nuevo método que proponen los investigadores de la UPV/EHU supone un gran avance en el campo de la traducción automática, ya que abre una nueva línea de trabajo que muestra que las redes neuronales, algoritmos informáticos que se inspiran en el cerebro humano, pueden aprender a traducir sin necesidad de traducciones preexistentes.
Se da la casualidad que otro estudio, desarrollado por un equipo de investigadores de Facebook y la Universidad de la Sorbona de París, ha propuesto un método similar. “Es algo positivo, pues significa que esta nueva aproximación va por el buen camino”, apunta Mikel Artetxe.
Los dos estudios, de los que se ha hecho eco la revista Science, fueron publicados en el repositorio virtual arXiv con un día de diferencia, y serán presentados en el sexto encuentro internacional sobre el aprendizaje de representaciones (International Conference on Learning Representations - ICLR), en abril, en Vancouver, Canadá.
Se da la casualidad que otro estudio, desarrollado por un equipo de investigadores de Facebook y la Universidad de la Sorbona de París, ha propuesto un método similar. “Es algo positivo, pues significa que esta nueva aproximación va por el buen camino”, apunta Mikel Artetxe.
Los dos estudios, de los que se ha hecho eco la revista Science, fueron publicados en el repositorio virtual arXiv con un día de diferencia, y serán presentados en el sexto encuentro internacional sobre el aprendizaje de representaciones (International Conference on Learning Representations - ICLR), en abril, en Vancouver, Canadá.